No. 1 (2020): Noroeste de México
Artículos

Modificaciones de la estructura corporal en grupos prehispánicos del norte y sureste de México debido a procesos de microadaptación fenotípica y formas de organización social

Published 2021-10-01

Keywords

  • morphology, functional, medical imaging, biomechanics, agriculture.

How to Cite

Modificaciones de la estructura corporal en grupos prehispánicos del norte y sureste de México debido a procesos de microadaptación fenotípica y formas de organización social. (2021). Noroeste De México, 1, 9-46. https://revistas.inah.gob.mx/index.php/noroestedemexico/article/view/17157

Abstract

The discussion on di?erent adaptation processes that can be observed in di?erent human groups, takes particular interest when we relate directly to the issue of physical variability. However, although much has been written on topics of body morphology, little has been addressed from a functional point of view. In addition to the pressures of the ecogeographic environment,  socio-cultural  factors  will  greatly  condition  the level of adaptation, a recurrent problem in ancient populations to the phenomenon of occupational stress. In this sense, the analysis of the mechanical parameters in the long bones (Ac, AT, AM, J and Nordin Index, among others), are useful to understand the types (fishing, hunting, gathering and agriculture) and levels (walking, running, climbing and carrying) of adaptation developed by human  populations  according  to  the  environment  and  their social organization. This contribution discusses the comparative results between two prehispanic samples, of both sexes; the first (N=60  femurs)  from  Alta  Vista,  Zacatecas,  Postclassic  period (1100 AD) with a centralized-heterarchical social organization, whose subsistence base was agriculture and mining. The second (N = 107 femurs) were individuals who lived in the Yucatan Peninsula, between the Classic and Postclassic periods (600-1500AD) with a heterogeneous, centralized and segmented social organization. With a homogeneous physical environment, whose subsistence base was agriculture and The results show a biomechanical bone response to sociocultural environments, rather than geographical and / or climatic ones.

Downloads

Download data is not yet available.

References

  1. Arias López, J. M. (2012). Procesos de microadaptación de poblaciones arqueológicas de la península de Yucatán: La dinámica funcional del fémur. En: Travis W. Stanton (Ed.), Archaeological Investigations in Yucatán, México. Oxford: Archaeopress.
  2. Arias López, J. M. y J. Montes de Paz (2015). Implicaciones sociales de las formas de subsistencia y el relieve geográfico en la estructura corporal de grupos prehispánicos chiapanecos: una perspectiva biomecánica 64. Diario de Campo, tercera época, año 2, núms. 10-11, septiembre-diciembre, 64-79.
  3. Biknevicius, A. R. y C. Ru? (1992). Use of biplanar radiographs for estimating cross-sectional geometric properties of mandibles. Anatomical Record, 232, 157-163.
  4. Bridges, P. S. y J. H. Blitz (1989) Changes in Activities with the Shift to Agriculture in the Southeastern United States. Current anthropology, 30, 385-394.
  5. Bosch, O. E. (2004) Sir Godfrey Newbold Hounsfield y la tomografía computada, su contribución a la medicina moderna. Revista Chilena de Radiología, 10 (4), 183-185.
  6. Brock, S. L. y C. B. Ru? (1988). Diachronic Patterns of Change in Structural properties of the Femur in the Prehistoric American Southwest. American Journal of Physical Anthropology 75 (1), 113-127.
  7. Cabrero Fraile, F. J. (2006). Imagen radiológica: principios físicos e instrumentación. Barcelona: Masson.
  8. Gómez-Esteban González, P. (2008). Tomografías TEP, TAC, RMN y ecografía. Recuperado de http://www.eltamiz.com.
  9. Kennedy, K. A. R. (1989). Skeletal Markers of Occupational Stress. En Y. M. Iscan (Ed.) Reconstruction of Life from the Skeleton, (pp. 129-160). Nueva York: Alan R. Liss.
  10. Fenoglio Limón, F. (2011) Minería en la cultura de Chalchihuites. Un modelo para armar. Colección Científica 571. México: Instituto Nacional de Antropología e Historia.
  11. Jurmain, R. (1999). Studies of bone geometry. The Shape of Things to come. Stories from the Skeleton. Behavioral Reconstruction in Human Osteology (pp. 231-322). En M. K. Standford (Ed.), Londres: Taylor and Francis.
  12. Krogman, M. y M. Y. Iscan (1986). The Human Skeleton in Forensic Medicine. Springfield: Charles C. Thomas Pub.
  13. Larsen, S. C. (1997). Stress and deprivation during the years of growth and development and adulthood. Bioarchaeology. Interpreting Behavior from the Human Skeleton (pp. 6-63). Cambridge: University Press.
  14. Loth, S. R. y M. Y. Iscan (1989). Morphological Assessment of Age in the Adult: The Thoracic Region. En M.Y. Iscan (Ed.) Age Markers in the Human Skeleton (pp. 105-135). Springfield: Charles C. Thomas Pub.
  15. Martínez Mora, E. (2007). La organización sociopolítica regional en la época prehispánica en el Valle del Río Suchil, Zacatecas. Tesis de maestría en arqueología no publicada, México: Escuela Nacional de Antropología e Historia.
  16. Meindl, R. S. y C. O. Lovejoy (1985). A revised method of age determination using the pubis, with a review and tests of accuracy of other current methods of pubic symphyseal aging. American Journal of Physical Anthropology, 68 (1), 29-45.
  17. Nagurka, M. L. y W. C. Hayes (1980). An interactive graphics package for calculating cross-sectional properties of complex shapes. Journal of Biomechanics, 13, 59-64.
  18. Ohman, J. C. (1993). Computer software for estimating cross-sectional geometric properties of long bones with concentric and eccentric elliptical models. Journal of Human Evolution, 25, 217-227.
  19. O'Neill, M. C. y C. B. Ru? (2004). Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. Journal Human Evolution, 47, 221-235.
  20. Pearson, O. M. (2000). Activity, climate, and postcranial robusticity: implications for modern human origins and scenarios of adaptive change. Current Anthropology, 41(4), 569-607.
  21. Ru?, C. B. (1984). Structural changes in the femur with the transition to agriculture on the Georgia coast. American Journal of Physical Anthropology, 64 (1), 125-136.
  22. Ru?, C. B. (2000). Body size, body shape, and long bone strength in modern humans. Journal of Human Evolution, 38 (2), 269-290.
  23. Ru?, C. B. y W. C. Hayes (1983). Cross-sectional geometry of Pecos Pueblo femora and tibiae, a biomechanical investigation: I. Method and general patterns of variation. American Journal of Physical Anthropology, 60 (4), 359-381.
  24. Ru?, C. B. y H. H. Jones (1981). Bilateral asymmetry in cortical bone of the humerus and tibiae, sex and age factors. Human Biology, 53, 69-86.
  25. Ru?, C. B. y F. P. Leo (1986). Use of Computed Tomography in skeletal structure research. American Journal of Physical Anthropology, 29 (1), 181-196.
  26. Ru?, C. B., H. M. McHenry y J. F. Thackeray (1999). Cross-sectional morphology of the SK 82 and 97 proximal femora. American Journal of Physical Anthropology,109 (4). 509-521.
  27. Ru?, B. C. y W. W. Scout (1991). Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. American Journal of Physical Anthropology, 86(3), 397-413.
  28. Runestad, J. A., C. B. Ru?, J. C. Neih, R. W. Thorington Jr. y F. Teaford (1993). Radiographic estimation of long bone cross-sectional geometric properties. American Journal of Physical Anthropology, 90 (2), 207-213.
  29. Schwartz, G. T. y G. C. Conroy (1996). Cross-sectional geometric properties of the Otavipithecus mandible. American Journal of Physical Anthropology, 99 (4), 613-623
  30. Sepúlveda Vargas, R.D. (2017). Humanos y naturaleza, una mirada desde la complejidad. Ciencias 126, (pp. 54-56). México: Facultad de Ciencias, UNAM.
  31. Warfel M. (1997). Software. Escrito en lenguaje BASIC. (Modificado por Stanley Serafín en 2000).