Núm. 6 (2018): Genética y genómica poblacional como herramientas de estudio antropológico en México
Enfoques

La inmunogenética más allá de la clínica: genes y patógenos que marcaron nuestra historia demográfica

Rodrigo Barquera Lozano
Departamento de Arqueogenética, Instituto Max Planck para la Ciencia de la Historia Humana, Jena, Alemania

Publicado 2020-04-01

Palabras clave

  • inmunogenética,
  • genética de poblaciones,
  • HLA,
  • poblaciones nativas americanas,
  • selección natural

Cómo citar

La inmunogenética más allá de la clínica: genes y patógenos que marcaron nuestra historia demográfica. (2020). Diario De Campo, 6, 46-58. https://revistas.inah.gob.mx/index.php/diariodecampo/article/view/15597

Resumen

Existe un número de condiciones clínicas asociadas con determinadas ancestrías, entre las cuales destaca la relación entre ciertos padecimientos autoinmunes y la ancestría nativa americana. Sin embargo, resulta lógico pensar que la presencia de estos padecimientos no fue seleccionada positivamente en el pasado y que las variantes relacionadas con estas afecciones fueron ventajosas en otro escenario. Los grupos nativos americanos tienen su origen en las poblaciones asiáticas. Tras dejar su continente de origen, viajaron a través de América y se encontraron con nuevos ambientes, animales y plantas, y por ello se expusieron a nuevos retos inmunes. La diversidad inicial en distintos genes se vio sometida a nuevas presiones selectivas al enfrentarse y adaptarse a una gran cantidad de microorganismos, muchos de los cuales posiblemente nunca habían enfrentado. Un caso particular de esta diversidad se aloja en los genes del sistema HLA, los cuales, a pesar de estar en proximidad, parecerían haber seguido historias evolutivas distintas. La pregunta obligada es: ¿la diversidad restringida en estos genes es el resultado de uno o más eventos adaptativos en América anteriores al siglo XVI, o somos testigos de uno de los más recientes ejemplos de selección natural en la historia de las poblaciones humanas?

Descargas

Los datos de descarga todavía no están disponibles.

Referencias

  1. Acuña-Soto, Rodolfo et al. (2000). “Large epidemics of hemorrhagic fevers in Mexico 1545-1815”. The American Journal of Tropical Medicine and Hygiene, 62 (6), pp. 733-739.
  2. _____ (2002). “Megadrought and megadeath in 16th century Mexico”. Emerging Infectious Diseases, 8 (4), pp. 360-362.
  3. _____ (2004). “When half of the population died: The epidemic of hemorrhagic fevers of 1576 in Mexico”. FEMS Microbiology Letters, 240 (1), pp. 1-5.
  4. Barquera, Rodrigo (2012). “El papel de la genética de poblaciones en la inmunología del trasplante en México”. Gaceta Médica de México, 148 (1), pp. 52-67.
  5. Belich, Mônica P. et al. (1992). “Unusual HLA-B alleles in two tribes of Brazilian Indians”. Nature, 357 (6376), pp. 326-329.
  6. Bortolini, Maria Cátira, y Francisco M. Salzano (1996). “mtDNA diversity analysis in Amerindians and other human populations – how different are they?” Revista Brasileira de Genética, 19 (3), pp. 527-534.
  7. Bos, Kirsten I. et al. (2014). “Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis”. Nature, 514 (7523), pp. 494-497.
  8. Bothamley, Graham H. et al. (1989). “Association of uberculosis and M. tuberculosis-specific antibody levels with hla”. Journal of Infectious Diseases, 195 (3), pp. 549-555.
  9. Buckle, Geoffrey C. et al. (2012). “Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010”. Journal of Global Health, 2 (1), p. 10401.
  10. Callaway, Ewen (2016). “Plant and animal DNA suggests first Americans took the coastal route”. Nature, 536 (7615), p. 138.
  11. Chaaithanya, Itta Krishna et al. (2013). “HLA class II allele polymorphism in an outbreak of chikungunya fever in Middle Andaman, India”. Immunology, 140 (2), pp. 202-210.
  12. Conde-González, Carlos J. et al. (1993). “Historical account of venereal diseases in Mexico”. Genitourinary Medicine, 69 (6), pp. 462-466.
  13. Crosby, Alfred W. (1976). “Virgin soil epidemics as a factor in the aboriginal depopulation in America”. The William and Mary Quarterly, 33 (2), pp. 289-299.
  14. Delgado, Julio C. et al. (2006). “Aspartic acid homozygosity at codon 57 of HLA-DQ beta is associated with susceptibility to pulmonary tuberculosis in Cambodia”. The Journal of Immunology, 176 (2), pp. 1090-1097.
  15. Dunstan, Sarah J. et al. (2014). “Variation at HLA-DRB1 is associated with resistance to enteric fever”. Nature Genetics, 46 (12), pp. 1333-1336.
  16. Escamilla-Tilch, Mónica et al. (2013). “Association of genetic polymorphism of hla-drb1 antigens with the susceptibility to lepromatous leprosy”. Biomedical Reports, 1 (6), pp. 945-949.
  17. Fernández Viña, Marcelo A. et al. (2012). “Tracking human migrations by the analysis of the distribution of hla alleles, lineages and haplotypes in closed and open populations”. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, pp. 820-829.
  18. Goldfeld, Anne E. et al. (1998). “Association of an HLA-DQ allele with clinical tuberculosis”. Journal of the American Medical Association, 279 (3), pp. 226-228.
  19. González-Galarza, Faviel F. et al. (2015). “Allele frequency net 2015 update: New features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations”. Nucleic Acids Research, 43, (núm. Especial de bases de datos), pp. D784-D788.
  20. Hammer, Christian et al. (2015). “Amino acid variation in HLA class II proteins is a major determinant of humoral response to common viruses”. The American Journal of Human Genetics, 97 (5), pp. 738-43.
  21. Hershberg, Ruth et al. (2008). “High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography”. PLOS Biology, 6 (12), p. e311.
  22. Khomenko, A. G. et al. (1990). “Tuberculosis in patients with various HLA phenotypes”. Tubercle, 71 (3), pp. 187-192.
  23. Krause-Kyora, Ben et al. (2018). “Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans”. Nature Communications, 9 (1), p. 1569.
  24. Lindo, John et al. (2016). “A time transect of exomes from a Native American population before and after European contact”. Nature Communications, 7, p. 13175.
  25. López Herráez, David et al. (2013). “Rheumatoid arthritis in Latin Americans enriched for Amerindian ancestry is associated with loci in chromosomes 1, 12, and 13, and the HLA class II region”. Arthritis & Rheumatology, 65 (6), pp. 1457-1467.
  26. Lutz, Charles T. (2014). “HLA BW4 and BW6 epitopes recognized by antibodies and Natural Killer cells”. Current Opinion in Organ Transplantation, 18 (4), pp. 436-441.
  27. Márquez Morfín, Lourdes, y Margarita Meza Manzanilla (2015). “Sífilis en la Ciudad de México: análisis osteopatológico”. Cuicuilco, 22, pp. 89-126.
  28. Marr, John S., y James B. Kiracofe (2000). “Was the huey cocoliztli a haemorrhagic fever?”. Medical History, 44 (3), pp. 341-362.
  29. Monack, Denise M. et al. (2004). “Persistent bacterial infections: The interface of the pathogen and the host immune system”. Nature Reviews Microbiology, 2 (9), pp. 747-765.
  30. Moreno-Estrada, Andrés et al. (2014). “The genetics of Mexico recapitulates Native American substructure and affects biomedical traits”. Science, 344 (6189), pp. 1280-1285.
  31. Palafox, Damián et al. (2016). “Determinación de HLA en pacientes con Síndrome de Parry Romberg atendidos en el Servicio de Cirugía Plástica y Reconstructiva del Hospital General ‘Dr. Manuel Gea González’”. Cirugía Plástica Ibero-Latinoamericana, 42 (2), pp. 115-120.
  32. Parham, P. et al. (1997). “Episodic evolution and turnover of HLA-B in the indigenous human populations of the Americas. Tissue Antigens, 50 (3), pp. 219-232.
  33. Pedersen, Mikkel W. et al. (2016). “Postglacial viability and colonization in North America’s ice-free corridor”. Nature, 537 (7618), pp. 45-49.
  34. Peschken, Christine A., y John M. Esdaile (1999). “Rheumatic diseases in North America’s indigenous peoples”. Seminars in Arthritis and Rheumatism, 28 (6), pp. 368-391.
  35. Pons-Estel, Bernardo A. et al. (2004). “The GLADEL multinational Latin American prospective inception cohort of 1,214 patients with systemic lupus erythematosus: ethnic and disease heterogeneity among ‘Hispanics’”. Medicine, 83 (1), pp. 1-17.
  36. Ramírez Gómez, L. A. et al. (2008). “Childhood systemic lupus erythematosus in Latin America. The GLADEL experience in 230 children”. Lupus, 17 (6), pp. 596-604.
  37. Salo, Wilmar L. et al. (1994). “Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy”. Proceedings of the National Academy of Sciences of the United States of America, 91 (6), pp. 2091-2094.
  38. Salomé, Jenny von et al. (2007). “Full-length sequence analysis of the HLA-DRB1 locus suggests a recent origin of alleles”. Immunogenetics, 59 (4), pp. 261-271.
  39. Salzano, Francisco M. (2002). “Molecular variability in Amerindians: Widespread but uneven information”. Anais da Academia Brasileira de Ciências, 74 (2), pp. 223-263.
  40. Sanchez, Elena et al. (2010). “Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus”. Arthritis & Rheumatology, 62 (12), pp. 3722-3729.
  41. Single, Richard M. et al. (2007). “Global diversity and evidence for coevolution of KIR and HLA. Nature Genetics, 39 (9), pp. 1114-1119.
  42. Somolinos d’Ardois, Germán (1956 / 2015). “El manuscrito sobre el cocoliztli”. En Francisco Hernández [Obras completas, t. IV] pp. 475-480. México: UNAM.
  43. Spyrou, Maria A. et al. (2019). “Ancient pathogen genomics as an emerging tool for infectious disease research”. Nature Reviews Genetics, 20, pp. 323-340.
  44. Tamm, Erika et al. (2007). “Beringian standstill and spread of Native American founders”. PLoS One, 2(9), p. e829.
  45. Terán-Escandón, David et al. (1999) “Human leukocyte antigen-associated susceptibility to pulmonary tuberculosis: Molecular analysis of class II alleles by DNA amplification and oligonucleotide hybridization in Mexican patients. Chest, 115 (2), pp. 428-433.
  46. Thornton, Russell (1997). “Aboriginal North American population and rates of decline, ca. a.d. 1500-1901”. Current Anthropology, 38, pp. 310-315.
  47. Vågene, Åshild J. et al. (2018). “Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico”. Nature Ecology & Evolution, 2 (3), pp. 520-528.
  48. Wang, Sijia et al. (2007). “Genetic variation and population structure in Native Americans”. PLOS Genetics, 3 (11), p. e185.
  49. Watkins, David I. et al. (1992). “New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci”. Nature, 357 (6376), pp. 329-333.
  50. Wirth, Thierry et al. (2008). “Origin, spread and demography of the Mycobacterium tuberculosis complex”. PLOS Pathogens, 4 (9), p. e1000160.
  51. Zhou, Zhemin et al. (2017). “Millennia of genomic stability within the invasive Para C lineage of Salmonella enterica”. Recuperado de https://www.biorxiv.org/content/early/2017/02/14/105759